$f(x):=\sqrt{x} \quad x:=1 \quad d x:=3 \quad \operatorname{diff}(x):=\frac{d}{d x} f(x) \quad \operatorname{ddiff}(x):=\frac{d^{2}}{d x^{2}} f(x)$
a $\quad f(x)=1$

$$
f(x+d x)=2
$$

b $\quad \mathrm{f}(\mathrm{x})+\mathrm{dx} \cdot \operatorname{diff}(\mathrm{x}) \rightarrow \frac{5}{2}=2.5$

$$
\mathrm{f}(\mathrm{x}+\mathrm{dx})-(\mathrm{f}(\mathrm{x})+\mathrm{dx} \cdot \operatorname{diff}(\mathrm{x})) \rightarrow 4^{\frac{1}{2}}-\frac{5}{2}=-0.5
$$

c $\mathrm{f}(\mathrm{x})+\mathrm{dx} \cdot \mathrm{diff}(\mathrm{x}+\mathrm{dx}) \rightarrow 1+\frac{3}{8} \cdot 4^{\frac{1}{2}}=1.75 \quad \mathrm{f}(\mathrm{x}+\mathrm{dx})-(\mathrm{f}(\mathrm{x})+\mathrm{dx} \cdot \operatorname{diff}(\mathrm{x}+\mathrm{dx})) \rightarrow \frac{5}{8} \cdot 4^{\frac{1}{2}}-1=0.25$
d $\quad f(x)+\frac{d x \cdot \operatorname{diff}(x)+d x \cdot \operatorname{diff}(x+d x)}{2} \rightarrow \frac{7}{4}+\frac{3}{16} \cdot 4^{\frac{1}{2}}=2.125$

$$
\mathrm{f}(\mathrm{x}+\mathrm{dx})-\left(\mathrm{f}(\mathrm{x})+\frac{\mathrm{dx} \cdot \operatorname{diff}(\mathrm{x})+\mathrm{dx} \cdot \operatorname{diff}(\mathrm{x}+\mathrm{dx})}{2}\right) \rightarrow \frac{13}{16} \cdot 4^{\frac{1}{2}}-\frac{7}{4}=-0.12 \mathrm{~s}
$$

e $\quad f(x)+d x \cdot \operatorname{diff}(x)+\frac{d x^{2} \cdot \operatorname{ddiff}(x)}{2} \rightarrow \frac{11}{8}=1.375$

$$
\mathrm{f}(\mathrm{x}+\mathrm{dx})-\left(\mathrm{f}(\mathrm{x})+\mathrm{dx} \cdot \operatorname{diff}(\mathrm{x})+\frac{\mathrm{dx}^{2} \cdot \operatorname{ddiff}(\mathrm{x})}{2}\right) \rightarrow 4^{\frac{1}{2}}-\frac{11}{8}=0.625
$$

$\mathrm{f}(\mathrm{x}):=\sqrt{\mathrm{x}} \quad \mathrm{x}:=16 \quad \mathrm{dx}:=9 \quad \operatorname{diff}(\mathrm{x}):=\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x}) \quad \operatorname{ddiff}(\mathrm{x}):=\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \mathrm{f}(\mathrm{x})$
a $\quad f(x)=4$

$$
f(x+d x)=5
$$

b $\mathrm{f}(\mathrm{x})+\mathrm{dx} \cdot \operatorname{diff}(\mathrm{x}) \rightarrow \frac{41}{32} \cdot 16^{\frac{1}{2}}=5.125$

$$
-f(x+d x)+(f(x)+d x \cdot d i f f(x)) \rightarrow-25^{\frac{1}{2}}+\frac{41}{32} \cdot 16^{\frac{1}{2}}=0.125
$$

c $f(x)+d x \cdot d i f f(x+d x) \rightarrow 16^{\frac{1}{2}}+\frac{9}{50} \cdot 25^{\frac{1}{2}}=4.9 \quad-f(x+d x)+(f(x)+d x \cdot \operatorname{diff}(x+d x)) \rightarrow \frac{-41}{50} \cdot 25^{\frac{1}{2}}+16^{\frac{1}{2}}=-0.1$
d $\quad f(x)+\frac{d x \cdot \operatorname{diff}(x)+d x \cdot \operatorname{diff}(x+d x)}{2} \rightarrow \frac{73}{64} \cdot 16^{\frac{1}{2}}+\frac{9}{100} \cdot 25^{\frac{1}{2}}=5.0125$

$$
-\mathrm{f}(\mathrm{x}+\mathrm{dx})+\left(\mathrm{f}(\mathrm{x})+\frac{\mathrm{dx} \cdot \operatorname{diff}(\mathrm{x})+\mathrm{dx} \cdot \mathrm{diff}(\mathrm{x}+\mathrm{dx})}{2}\right) \rightarrow \frac{-91}{100} \cdot 25^{\frac{1}{2}}+\frac{73}{64} \cdot 16^{\frac{1}{2}}=0.0125
$$

$e \quad f(x)+d x \cdot \operatorname{diff}(x)+\frac{d x^{2} \cdot \operatorname{ddiff}(x)}{2} \rightarrow \frac{2543}{2048} \cdot 16^{\frac{1}{2}}=4.9667969$

$$
-f(x+d x)+\left(f(x)+d x \cdot d i f f(x)+\frac{d x^{2} \cdot d d i f f(x)}{2}\right) \rightarrow-25^{\frac{1}{2}}+\frac{2543}{2048} \cdot 16^{\frac{1}{2}}=-0.0332031
$$

$\mathrm{f}(\mathrm{x}):=\cos (\mathrm{x}) \quad \mathrm{x}:=0 \quad \mathrm{dx}:=\frac{\pi}{6} \quad \operatorname{diff}(\mathrm{x}):=\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x}) \quad \operatorname{ddiff}(\mathrm{x}):=\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \mathrm{f}(\mathrm{x})$
a $\quad \mathrm{f}(\mathrm{x})=1$

$$
f(x+d x)=0.8660254
$$

b $\quad \mathrm{f}(\mathrm{x})+\mathrm{dx} \cdot \operatorname{diff}(\mathrm{x}) \rightarrow 1=1$

$$
-\mathrm{f}(\mathrm{x}+\mathrm{dx})+(\mathrm{f}(\mathrm{x})+\mathrm{dx} \cdot \mathrm{diff}(\mathrm{x})) \rightarrow \frac{-1}{2} \cdot 3^{\frac{1}{2}}+1=0.1339746
$$

c $\quad \mathrm{f}(\mathrm{x})+\mathrm{dx} \cdot \operatorname{diff}(\mathrm{x}+\mathrm{dx}) \rightarrow 1-\frac{1}{12} \cdot \pi=0.7382006$

$$
-\mathrm{f}(\mathrm{x}+\mathrm{dx})+(\mathrm{f}(\mathrm{x})+\mathrm{dx} \cdot \operatorname{diff}(\mathrm{x}+\mathrm{dx})) \rightarrow \frac{-1}{2} \cdot 3^{\frac{1}{2}}+1-\frac{1}{12} \cdot \pi=-0.1278248
$$

$\mathrm{d} \quad \mathrm{f}(\mathrm{x})+\frac{\mathrm{dx} \cdot \operatorname{diff}(\mathrm{x})+\mathrm{dx} \cdot \operatorname{diff}(\mathrm{x}+\mathrm{dx})}{2} \rightarrow 1-\frac{1}{24} \cdot \pi=0.8691003$

$$
-f(x+d x)+\left(f(x)+\frac{d x \cdot d i f f(x)+d x \cdot d i f f(x+d x)}{2}\right) \rightarrow \frac{-1}{2} \cdot 3^{\frac{1}{2}}+1-\frac{1}{24} \cdot \pi=0.0030749
$$

e $\quad f(x)+d x \cdot \operatorname{diff}(x)+\frac{d x^{2} \cdot d d i f f(x)}{2} \rightarrow 1-\frac{1}{72} \cdot \pi^{2}=0.8629222$

$$
-f(x+d x)+\left(f(x)+d x \cdot \operatorname{diff}(x)+\frac{d x^{2} \cdot d d i f f(x)}{2}\right) \rightarrow \frac{-1}{2} \cdot 3^{\frac{1}{2}}+1-\frac{1}{72} \cdot \pi^{2}=-0.0031032
$$

