T704 (2008-2009)

А.А.Быков. boombook@yandex.ru, boombook.narod.ru Домашнее задание k2-m1-03

2008-2009 Семинар k2-m1-03

Тема: Несобственные интегралы, зависящие от параметра

1. Исследование сходимости

С Задачи средней сложности для разбора на семинаре.

- **1.** Исследуйте сходимость $\int_0^{+\infty} \frac{x^5 + 1 + x^{-3,3}}{x^7 + 1 + x^{-2,5}} dx$.
- **2.** Исследуйте сходимость $\int_{1}^{+\infty} (\sqrt{x^9 + x^3 + 1} \sqrt{x^9 x^3 + 1}) dx$.
- 3. Исследуйте сходимость $\int_0^{+\infty} \frac{\ln(1+x^2)}{x^3 \cdot \sqrt{x}} \, dx$.
- **4.** Найдите $\int_0^{+\infty} x^{41} e^{-x^6} dx$.
- **5.** Вычислите $\int_a^b f(x) \ dx$, $\int_a^b x f(x) \ dx$, $\int_a^b x^2 f(x) \ dx$, $\langle x \rangle$, Dx, σ для $f(x) = \ln x$, a = 0, b = 1. Заметьте, что $\forall \alpha > 0 \ \lim_{x \to +0} x^{\alpha} (\ln x)^{\beta} = 0$
- **6.** При каких $\alpha > 0$ сходится $\int_{1}^{+\infty} x^6 \sin(x^{\alpha}) dx$
- 7. При каких значениях параметра α интеграл $F(\alpha) = \int_{1}^{+\infty} \left(x^{\alpha-7} + x^{3-\alpha}\right) dx$ сходится? Вычислите этот интеграл при указанных значениях α .
- 8. При каких значениях параметра α интеграл $F(\alpha) = \int_0^1 \frac{1+x^3}{x^\alpha} dx$ сходится? Вычислите этот интеграл при указанных значениях α .
- **9.** При каких значениях параметра α интеграл $F(\alpha) = \int_1^{+\infty} \frac{1+x^3}{x^{\alpha}} dx$ сходится? Вычислите этот интеграл при указанных значениях α .
- **10.** Найдите $\int \sin(\ln x) dx$
- $\oint \frac{1}{2}x(\sin\ln x \cos\ln x) + C.$
- **11.** Вычислите интеграл $\int_1^{+\infty} x^{\alpha-1} \cdot \sin(\ln x) \, dx$ методом двукратного интегрирования по частям. \blacklozenge $\frac{1}{2}$. $\int_1^{+\infty} x^{\alpha-1} \sin(\ln x) \, dx = \frac{1}{1+\alpha^2}$, $\int_1^{+\infty} x^{\alpha-1} \cos(\ln x) \, dx = \frac{-\alpha}{1+\alpha^2}$,
- **12.** Вычислите интеграл $\int_{1}^{+\infty} x^{-2} \cdot \ln(x) \cdot \sin(\ln x) dx$ методом дифференцирования по параметру (предварительно введите параметр в нужном месте). Предварительно вычислите методом двукратного интегрирования по частям интеграл $\int_1^{+\infty} x^{\beta} \sin(\ln x) \, dx$ или $\int_1^{+\infty} x^{\beta} \cos(\ln x) \, dx$ или $\int_1^{+\infty} x^{\beta} \cos(\ln x) \, dx$ $\spadesuit \frac{1}{2}$. Указание: $\int_1^{+\infty} x^{\alpha-1} \sin(\ln x) \, dx = \frac{1}{1+\alpha^2}$,
- 13. (1) Вычислите $\int (\ln x)^3 dx$. $\oint xt^3 3xt^2 + 6xt 6x + C$. (2) Вычислите $\int_0^1 (\ln x)^3 dx$. $\oint -6$.
- **14.** При каких значениях α сходится $\int_0^1 x^{\alpha-3} dx$? Найдите этот интеграл.
- **15.** Найдите $\int_0^{+\infty} x^{41} e^{-x^6} dx$.
- **16.** Используя метод дифференцирования по параметру, найдите $\int_{-\infty}^{+\infty} x^4 \cdot e^{-x^2} dx$. Можно использовать равенство $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$.
- **17.** Вычислите интеграл $\int_0^{+\infty} x^2 e^{-x} \sin x \, dx$ методом дифференцирования по параметру (предварительно введите параметр в нужном месте). Можно использовать тождества $\int_0^{+\infty} e^{-ax} \sin(bx) \, dx = \frac{b}{a^2+b^2}$, $\int_0^{+\infty} e^{-ax} \cos(bx) \, dx = \frac{a}{a^2+b^2}$.
- **18.** Найдите значение величины $\int_0^{+\infty} \frac{e^{-2x^3} e^{-5x^3}}{x} dx$
- $\oint \frac{1}{3} \ln \frac{5}{2}$.
- 19. Исследуйте на сходимость и вычислите (если сходится) методом дифференцирования по параметру $\int_0^{+\infty} \frac{\arctan(e^6 \cdot x^{11}) \arctan(e^3 \cdot x^{11})}{x} \, dx$ $\oint \frac{3\pi}{22}. \int_0^{+\infty} \frac{\arctan(a \cdot x^n) \arctan(b \cdot x^n)}{x} \, dx = \frac{\pi}{2n} \ln \frac{a}{b}.$
- Д Задачи средней сложности для самостоятельного решения.
- **20.** Исследуйте сходимость $\int_0^{+\infty} \frac{x^3 + 1 + x^{-2,7}}{x^5 + 1 + x^{-4,2}} dx$.
- **21.** Исследуйте сходимость $\int_{1}^{+\infty} (\sqrt{x^7 + x^3 + 1} \sqrt{x^7 x^3 + 1}) dx$.
- **22.** Исследуйте сходимость $\int_0^{+\infty} \frac{\ln(1+x^2)}{x^2 \cdot \sqrt{x}} dx$.
- **23.** Найдите $\int_{0}^{+\infty} x^{29} e^{-x^3} dx$.
- **24.** Вычислите $\int_a^b f(x) \ dx$, $\int_a^b x f(x) \ dx$, $\int_a^b x^2 f(x) \ dx$, $\langle x \rangle$, Dx, σ для $f(x) = \left(\ln x\right)^2$, a = 0, b = 1. Заметьте, что $\forall \alpha > 0 \lim_{x \to +0} x^{\alpha} (\ln x)^{\beta} = 0$

Вариант k2-m1-03-v1

Методические материалы по курсу математического анализа

A.А.Быков, boombook@yandex.ru, boombook.narod.ru Домашнее задание k2-m1-03

T704 (2008-2009)

Вариант k2-m1-03-v1

- **25.** При каких $\alpha > 0$ сходится $\int_{1}^{+\infty} x^5 \sin(x^{\alpha}) dx$
- **26.** При каких значениях параметра α интеграл $F(\alpha)=\int_1^{+\infty}\left(x^{2-\alpha}+x^{\alpha-8}\right)dx$ сходится? Вычислите этот интеграл при указанных значениях α .
- **27.** При каких значениях параметра α интеграл $F(\alpha) = \int_0^1 \left(x^{\alpha-3} + x^{7-\alpha}\right) dx$ сходится? Вычислите этот интеграл при указанных значениях α .
- **28.** При каких значениях параметра α интеграл $F(\alpha) = \int_{1}^{+\infty} (x^{\alpha} + x^{\alpha-2}) dx$ сходится? Вычислите этот интеграл
- **29.** Найдите $\int \cos(\ln x) dx$
- $\oint \frac{1}{2}x(\sin\ln x + \cos\ln x) + C.$
- **30.** Найдите $\int_{1}^{+\infty} x^{\alpha-1} \cdot \sin(\ln x) \, dx$ методом двукратного интегрирования по частям.
- $\oint \frac{1}{2} \cdot \int_1^{+\infty} x^{\alpha-1} \sin(\ln x) \, dx = \frac{1}{1+\alpha^2}, \ \int_1^{+\infty} x^{\alpha-1} \cos(\ln x) \, dx = \frac{-\alpha}{1+\alpha^2},$
- **31.** Найдите $\int_{1}^{+\infty} x^{-2} \cdot (\ln(x))^2 \cdot \sin(\ln x) \, dx$ методом дифференцирования по параметру (предварительно введите параметр в нужном месте). Предварительно вычислите методом двукратного интегрирования по частям интеграл $\int_1^{+\infty} x^\beta \sin(\ln x) \, dx$ или $\int_1^{+\infty} x^\beta \cos(\ln x) \, dx$ $\spadesuit \frac{1}{2}$. Указание: $\int_1^{+\infty} x^{\alpha-1} \sin(\ln x) \, dx = \frac{1}{1+\alpha^2}$, $\int_1^{+\infty} x^{\alpha-1} \cos(\ln x) \, dx = \frac{-\alpha}{1+\alpha^2}$,
- **32.** (1) Вычислите $\int 32x^3(\ln x)^2 dx$. $\blacklozenge 8x^4t^2 4x^4t + x^4 + C$. (2) Вычислите $\int_0^1 32x^3(\ln x)^2 dx$. \blacklozenge 1.
- **33.** При каких значениях α сходится $\int_{1}^{+\infty} x^{\alpha-3} dx$? Найдите этот интеграл.
- **34.** Найдите $\int_0^{+\infty} x^{29} e^{-x^3} dx$.
- **35.** Используя метод дифференцирования по параметру, найдите $\int_{-\infty}^{+\infty} x^6 \cdot e^{-x^2} dx$. Можно использовать равенство $\int_{-\infty}^{+\infty} x^2 e^{-x^2} dx = \frac{1}{2} \sqrt{\pi}$.
- **36.** Вычислите интеграл $\int_0^{+\infty} x^2 e^{-x} \cos x \, dx$ методом дифференцирования по параметру (предварительно введите параметр в нужном месте). Можно использовать тождества $\int_0^{+\infty} e^{-ax} \sin(bx) \, dx = \frac{b}{a^2+b^2}, \quad \int_0^{+\infty} e^{-ax} \cos(bx) \, dx = \frac{a}{a^2+b^2}.$
- **37.** Найдите значение величины $\int_0^{+\infty} \frac{e^{-2x^2} e^{-5x^2}}{x} dx$
- **38.** Вычислите $\int_0^{+\infty} \frac{\arctan(e^9 \cdot x^5) \arctan(e^3 \cdot x^5)}{x} dx$ $\oint \frac{6\pi}{10} \cdot \int_0^{+\infty} \frac{\arctan(a \cdot x^n) \arctan(b \cdot x^n)}{x} dx = \frac{\pi}{2n} \ln \frac{a}{b}.$
- С Задачи средней сложности для разбора на семинаре.
- 39. Вычислите $\int_1^{+\infty} x^{-2} \cdot \ln(x) \cdot \sin(\ln x) \, dx$. Известно, что $\int_1^{+\infty} x^{-p-1} \sin(q \ln x) \, dx = \frac{q}{p^2 + q^2}$, $\int_1^{+\infty} x^{-p-1} \cos(q \ln x) \, dx = \frac{p}{p^2 + q^2}$.
- **40.** Вычислите $\int_1^{+\infty} x^{-3} \cdot \ln(x) \cdot \cos(\ln x) \, dx$. Известно, что $\int_0^{+\infty} e^{-px} \cdot \sin(qx) \, dx = \frac{q}{p^2 + q^2}$,
- $\int_0^{+\infty} e^{-px} \cdot \cos(qx) \, dx = \frac{p}{p^2 + q^2}.$
- **41.** Вычислите $\int_1^{+\infty} x^{-2} \cdot (\ln(x))^2 \cdot \cos(\ln x) \, dx$. Известно, что $\int_0^{+\infty} e^{-px} \cdot \sin(qx) \, dx = \frac{q}{p^2 + q^2}$,
- $\int_0^{+\infty} e^{-px} \cdot \cos(qx) \, dx = \frac{p}{p^2 + q^2}.$
- **42.** Вычислите $\int_{1}^{+\infty} x^{-7} \cdot \ln(x) \cdot \sin(\ln x) dx$.
- **43.** Исследуйте на сходимость и вычислите (если сходится) методом дифференцирования по параметру $\int_0^{+\infty} \frac{\arctan(e^6 \cdot x^{11}) \arctan(e^3 \cdot x^{11})}{x} dx$ \bullet $\frac{3\pi}{22}$. $\int_0^{+\infty} \frac{\arctan(a \cdot x^n) \arctan(b \cdot x^n)}{x} dx = \frac{\pi}{2n} \ln \frac{a}{b}$.
- 44. Исследуйте на сходимость и вычислите (если сходится) методом дифференцирования по параметру $\int_0^{+\infty} \frac{\arctan(32 \cdot x^7) - \arctan(2 \cdot x^7)}{x} \, dx$ $\oint \frac{\ln 16\pi}{14} \cdot \int_0^{+\infty} \frac{\arctan(a \cdot x^n) - \arctan(b \cdot x^n)}{x} \, dx = \frac{\pi}{2n} \ln \frac{a}{b}.$
- **45.** Исследуйте на сходимость и вычислите (если сходится) $\int_0^{+\infty} \frac{e^{-2x}-e^{-3x}}{x} dx$
- Д Задачи средней сложности для самостоятельного решения.
- **46.** Вычислите $\int_{1}^{+\infty} x^{-3} \cdot \ln(x) \cdot \sin(\ln x) \, dx$. Известно, что $\int_{0}^{+\infty} e^{-px} \cdot \sin(qx) \, dx = \frac{q}{p^2 + q^2}$, $\int_0^{+\infty} e^{-px} \cdot \cos(qx) \, dx = \frac{p}{p^2 + q^2}.$

Методические материалы по курсу математического анализа

A.А.Быков, boombook@yandex.ru, boombook.narod.ru Домашнее задание k2-m1-03

T704 (2008-2009)

Вариант k2-m1-03-v1

♦ 0, 16.

47. Вычислите
$$\int_{1}^{+\infty} x^{-2} \cdot (\ln(x))^2 \cdot \sin(\ln x) \, dx$$
. Известно, что $\int_{0}^{+\infty} e^{-px} \cdot \sin(qx) \, dx = \frac{q}{p^2 + q^2}$, $\int_{0}^{+\infty} e^{-px} \cdot \cos(qx) \, dx = \frac{p}{p^2 + q^2}$.

48. Вычислите
$$\int_1^{+\infty} x^{-4} \cdot \ln(x) \cdot \sin(\ln x) \, dx$$
. Известно, что $\int_0^{+\infty} e^{-px} \cdot \sin(qx) \, dx = \frac{q}{p^2 + q^2}$, $\int_0^{+\infty} e^{-px} \cdot \cos(qx) \, dx = \frac{p}{p^2 + q^2}$.

49. Вычислите
$$\int_{1}^{+\infty} x^{-5} \cdot \left(\ln(x) \right)^{2} \cdot \cos(\ln x) \, dx$$
.

50. Вычислите
$$\int_{0}^{+\infty} \frac{\arctan(e^{9} \cdot x^{5}) - \arctan(e^{3} \cdot x^{5})}{x} dx$$
 $\spadesuit \frac{6\pi}{10}$. $\int_{0}^{+\infty} \frac{\arctan(a \cdot x^{n}) - \arctan(b \cdot x^{n})}{x} dx = \frac{\pi}{2n} \ln \frac{a}{b}$.

51. Найдите $\int_{0}^{+\infty} \frac{\arctan(81 \cdot x^{15}) - \arctan(3 \cdot x^{15})}{x} dx$
 $\spadesuit \frac{\ln 27\pi}{30}$. $\int_{0}^{+\infty} \frac{\arctan(a \cdot x^{n}) - \arctan(b \cdot x^{n})}{x} dx = \frac{\pi}{2n} \ln \frac{a}{b}$.

$$\oint \frac{6\pi}{10}. \int_0^{+\infty} \frac{\arctan(a \cdot x^n) - \arctan(b \cdot x^n)}{x} dx = \frac{\pi}{2n} \ln \frac{a}{b}.$$

51. Найдите
$$\int_0^{+\infty} \frac{\arctan(81 \cdot x^{15}) - \arctan(3 \cdot x^{15})}{x} dx$$

$$\oint \frac{\ln 27\pi}{30} \cdot \int_0^{+\infty} \frac{\arctan(a \cdot x^n) - \arctan(b \cdot x^n)}{x} dx = \frac{\pi}{2n} \ln \frac{a}{b}$$

53. Исследуйте на сходимость и вычислите (если сходится) методом дифференцирования по параметру
$$\int_0^{+\infty} \frac{\arctan(e^6 \cdot x^{11}) - \arctan(e^3 \cdot x^{11})}{x} dx$$
 $\oint \frac{3\pi}{22}$.
$$\int_0^{+\infty} \frac{\arctan(a^3 \cdot x^{11}) - \arctan(b \cdot x^{n})}{x} dx = \frac{\pi}{2n} \ln \frac{a}{b}.$$