C Alexey A Bykov, 20 oct 2007 boombook@yandex.ru Limits in symbolic form

Limits by Asymptotic

$\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{\sqrt[4]{1+x}-\sqrt[4]{1-x}} \rightarrow \frac{4}{3}$
$\sqrt[3]{1+x} \quad$ converts to the series $\quad 1+\frac{1}{3} \cdot x-\frac{1}{9} \cdot x^{2}+\frac{5}{81} \cdot x^{3}-\frac{10}{243} \cdot x^{4}+\frac{22}{729} \cdot x^{5}+O\left(x^{6}\right)$
$\sqrt[3]{1-x} \quad$ converts to the series
$1-\frac{1}{3} \cdot x-\frac{1}{9} \cdot x^{2}-\frac{5}{81} \cdot x^{3}-\frac{10}{243} \cdot x^{4}-\frac{22}{729} \cdot x^{5}+O\left(x^{6}\right)$
$\sqrt[4]{1+x} \quad$ converts to the series

$$
1+\frac{1}{4} \cdot x-\frac{3}{32} \cdot x^{2}+\frac{7}{128} \cdot x^{3}-\frac{77}{2048} \cdot x^{4}+\frac{231}{8192} \cdot x^{5}-\frac{1463}{65536} \cdot x^{6}+O\left(x^{7}\right)
$$

$\sqrt[4]{1-x} \quad$ converts to the series

$$
1-\frac{1}{4} \cdot x-\frac{3}{32} \cdot x^{2}-\frac{7}{128} \cdot x^{3}-\frac{77}{2048} \cdot x^{4}-\frac{231}{8192} \cdot x^{5}-\frac{1463}{65536} \cdot x^{6}+O\left(x^{7}\right)
$$

$\sqrt[3]{1+x}-\sqrt[3]{1-x} \quad$ converts to the series $\quad \frac{2}{3} \cdot x+O\left(x^{3}\right)$
$\sqrt[4]{1+x}-\sqrt[4]{1-x} \quad$ converts to the series $\quad \frac{1}{2} \cdot x+O\left(x^{3}\right)$
$\frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{\sqrt[4]{1+x}-\sqrt[4]{1-x}} \quad$ converts to the series $\quad \frac{4}{3}+O\left(x^{2}\right)$

